An Introduction to SCIP

Cornelius Schwarz
University of Bayreuth
cornelius.schwarz@uni-bayreuth.de

September 28, 2010

1 Preface

In this tutorial we give a short introduction to the constraint integer program-
ming framework SCIP (solving constraint integer programs) which was devel-
oped by Tobias Achterberg [1] as part of his PhD thesis. SCIP combines con-
straint programming and mixed integer programming (MIP) into one frame-
work. We will focus on the mixed integer part here. We show how to use SCIP
as a MIP solver backend using the n-queens example. This introduction is cur-
rently adapted to SCIP 2.0 and will probably be extended to the development
of plugins in the future.

SCIP is free for academical use, but you will also need an LP solver. For this
purpose you can use SoPlex, which was developed by Roland Wunderling [2] as
part of his PhD thesis and is distributed under the same conditions as SCIP.
The easiest way is to download the ZIB Optimization Suite, which contains
SCIP/SoPlex and the mathematical modeling language Zimpl [3].

A good starting point for SCIP is to look at the examples bundled with
the source code. As a reference you can use the doxygen documentation, which
is available online at http://scip.zib.de/doc/html/index.html. You should
start by looking at “File List — scip.h”. Here you find the most important func-
tions, sorted by categories like “Global Problem Methods”, “Variable Methods”,
“Constraint Methods” and so on. Another place to look at is “File Members
— All — s. Here you also find functions like SCIPcreateConsLinear which is
not defined in “scip.h” — since it is a plugin — but in “cons_linear.h”. The most
useful SCIP functions start with the prefix “SCIP”.

2 Using SCIP as a MIP solver backend

In this section we show how to use SCIP as a backend for solving mixed integer
programs by developing a solver for the n-queens problem. We first give a brief
introduction into the problem and than describe a C++ program for solving it.
The model is based on the one described in the Zimpl documentation.

2.1 The n-queens problem

The n-queens problem asks how to place n queens on an n x n chess board in
a way that no two queens interfere. In detail this means:

http://scip.zib.de/doc/html/index.html

e In each vertical line of the board only one queen is allowed, we will refer
to these lines as columns.

e In each horizontal line of the board only one queen is allowed, these lines
will be called rows later on.

e In each diagonal line only one queen is allowed.

This can be modeled as a binary program in the following way: Let z; ; € {0,1}
denote whether a queen is placed on the ith row and the jth column of the
chess board. Since the problem is to find a placement, the objective function is
irrelevant. We add, however, the redundant objective to maximize the number

of placed queens:
n n
max 33,

i=1 j=1

Now we force exactly one queen to be placed in every column and every row:

n
dwiy = 1,j=1,...,n
=1

n
Exi’j = 1,i:1,...,n
j=1

The diagonal rows are a little bit more complicated to write up:

n—j+1
g Tijri-1 < 1, j=1,...,n
i=1
n—i+1
E Litj—1,5 < Li=1, T
i=1
n—j+1
E Tijn—j—i+2 < 17 .]: 17"'7’”‘
i=1
n—i+1
< 1,i=1,...,n

E Titj—1n—j+1
Jj=1

2.2 Error handling in SCIP

Before we transform the n-queens IP program into a SCIP program, we first con-
sider a general point when working with SCIP functions: Most SCIP functions
return a value of the type SCIP_RETCODE. If this is equal to SCIP_OKAY, then
everything went well, otherwise it indicates an error code. Therefore the normal
call of a SCIP function returning a SCIP_RETCODE (we use SCIPfunction as a
generic name — replace it with whatever function you are calling) is

SCIP_RETCODE retcode;
retcode = SCIPfunction();
if (retcode != SCIP_OKAY)
{

// do your error handling here

}

Since this is a lot of code for every function call, SCIP provides two macros
namely SCIP_CALL and SCIP_CALL_ABORT. The second one just aborts the ex-
ecution by calling abort() if an error occured. The first one calls the SCIP
function and, in the error case, returns the retcode. This results in the follow-
ing code:

SCIP_RETCODE myfunction(void)

{
SCIP_CALL(SCIPfunction());
SCIP_CALL(SCIPotherfunction());

}

int main(int args, char * argv)

{
SCIP_RETCODE retcode = myfunction();
if (retcode != SCIP_OKAY)
{

// do your error handling here

}

}

While this is nice for C programs, there is a problem when using SCIP_CALL
from C4++: A C++ constructor is not allowed to return a value. The same is
true for destructors. Therefore we supply a third method, the SCIP_CALL_EXC
macro. This behaves just like SCIP_CALL, but instead of returning the error
code it throws an exception of a new type SCIPException. So the example
above would now be written as:

int main(int args, char * argv)

{
try
{
SCIP_CALL_EXC(SCIPfunction());
SCIP_CALL_EXC(SCIPotherfunction());
} catch(SCIPException & exec)
{
cerr<<exec.what () <<endl;
exit(exec.getRetcode());
}
}

2.3 Include files

For a SCIP based project there are three main header files to consider. The first
and most important one is of course “scip/scip.h”. It declares the SCIP pointer
and all public functions. You may have noticed that SCIP can be extended by
plugins. In fact most parts of the MIP solver like heuristics, separators, etc. are
implemented as plugins. To use them, include “scip/scipdefplugins.h”.

These two header files are C type. In early versions of SCIP it was necessary
to wrap them in an extern "C" statement. As of version 1.1 SCIP now detects
a C++ compiler and adds extern "C" own its own.

The last header file to consider is “objscip/objscip.h” if you want to use the
C++ wrapper classes distributed with SCIP. For the queens example we do not
develop own plugins, so we just use

#include <scip/scip.h>
#include <scip/scipdefplugins.h>

2.4 Developing a queens solver
When you use SCIP you have to do the following steps:
e initialize the SCIP environment
e load all desired plugins (including your own, if you like)
e create a problem
e add variables and constraints to the problem
e solve the problem
e access results
e free the SCIP environment

You can of course cycle through some of these steps like accessing the results,
modifying the problem and solving again. We will now describe these steps in
more detail for the queens solver.

2.4.1 Initializing the SCIP environment

In this section, we start developing our queens solver. Before you can do any-
thing with SCIP, you have to create a valid SCIP pointer. For this purpose use
the SCIPcreate function:

SCIP* scip;
SCIP_CALL_EXC(SCIPcreate(& scip));

2.4.2 Loading all desired plugins

After we created our SCIP pointer we load the plugins. In SCIP nearly every-
thing is a plugin: heuristics, separators, constraint handlers, etc. Whenever you
want to use one you first have to include it. This is done by various SCIPinclude
functions like SCIPincludeHeur for heuristics or SCIPincludeConshdlr for con-
straint handlers. This also activates the default display plugins which writes
various messages to standard output. (If you do not like this you can disable it
by a call of SCIPsetMessagehdlr (NULL).) All together we get:

SCIP_CALL_EXC(SCIPincludeDefaultPlugins(scip));
// SCIP_CALL_EXC(SCIPsetMessagehdlr (NULL);
// uncomment the above line to disable output

2.4.3 Creating a problem

Now we can create the IP model for the queens solver in SCIP. First we create an
empty problem with SCIPcreateProb. The first argument is our SCIP pointer
and the second is the name of the problem. You can also supply user specific
problem data and call back functions to handle them, but normally you will not
need them and can safely set them to NULL:

SCIP_CALL_EXC(SCIPcreateProb(scip, "queens", NULL, NULL,
NULL, NULL, NULL, NULL, NULL));

The default objective sense for SCIP problems is minimizing. Since we have a
maximization problem we have to change this:

SCIP_CALL_EXC(SCIPsetObjsense(scip, SCIP_OBJSENSE_MAXIMIZE)) ;

2.4.4 Creating variables

Now it is time to fill the empty problem with information. We start by creating
variables, one binary variable for every field on the chess board. Variables are
accessed through the type SCIP_VAR*. Associated with each variable is a type
(continuous, integer, or binary), lower and upper bound and a objective. In our
case, the type is binary for all variables, the lower bound is naturally 0, the
upper bound 1, and the objective is 1 for all variables:

SCIP_VAR* var;

SCIP_CALL_EXC(SCIPcreateVar(scip, & var, "x#i#j", 0.0, 1.0, 1.0,
SCIP_VARTYPE_BINARY, TRUE, FALSE,
NULL, NULL, NULL, NULL, NULL));

Here, you should replace ¢ and j by the actually row and column number of the
variable. The fourth argument is the lower bound, the fifth the upper bound,
the sixth the objective, and the seventh the type. After that you specify two
boolean parameters indicating whether this variable is in the initial (root) LP
and whether it is allowed to be removed during aging. Like in SCIPcreateProb
you can use the last five parameters to specify user data. We set these param-
eters to NULL. After creating the SCIP_VAR pointer it is time to add it to the
SCIP problem:

SCIP_CALL_EXC(SCIPaddVar(scip, var));

You should store the SCIP_VAR pointers somewhere, since you will need them to
add the variables to constraints and to access their values in the final solution
and so on. In our example, you can use a two dimensional STL vector for that
purpose.

2.4.5 Creating constraints

Creating and adding variables is just half of the battle. To ensure feasibility,
we have to add the constraints we described above. To create a constraint in
SCIP you first need to specify a constraint handler. The constraint handler is
responsible for checking feasibility, tighten variable bounds, adding new rows
to the underlying LP problem and so on. The creating method depends on the

actual constraint you want to use and is usually called SCIPcreateConsName —
for instance SCIPcreateConsLinear. Although there are many different default
constraints like knapsack, logic-OR, etc., it is a safe way to create them as
linear constraints. The presolver will automatically transform them to the right
constraint type. We will therefore add all our constraints as type linear and
describe the handler here.

The linear constraint handler handles constraint of the following type:

lhs < aTz < rhs

There are three special cases of these: For equality constraints set [hs = rhs,
for lesser equal constraints, set [hs = —SCIPinfinity(scip) and for greater
equal constraints rhs = SCIPinfinity(scip). So the creating of the diagonal
constraints looks as follows:

SCIP_CONS* cons;

SCIP_CALL_EXC(SCIPcreateConsLinear(scip, & cons, "diag",
0, NULL, NULL, O, 1.0, TRUE,
TRUE, TRUE, TRUE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE);

The first is, as usual, the SCIP pointer and the second the SCIP_CONS pointer,
which allows to access the constraint later. After that you can specify variables
to be added to the constraint. This could be done by specifying the number,
an array of SCIP_VAR pointers to variables, and an array of values of the coeffi-
cients, stored as doubles. We skip the adding at this point and use the function
SCIPaddCoefLinear described later on. The next two entries are [hs and rhs.
In our cases 0 and 1. Then you specify the following parameters:

initial set this to TRUE if you want the constraint to occur in the root problem

separate set this to TRUE if you would like the handler to separate, e. g. generate
cuts

enforce set this to TRUE if you would like the handler to enforce solutions.
This means that when the handler declares an LP or pseudo solution as
infeasible, it can resolve infeasibility by adding cuts, reducing the domain
of a variable, performing a branching, etc.

check set this to TRUE if the constraint handler should check solutions

propagate set this to TRUE if you want to propagate solutions, this means
tighten variables domains based on constraint information

local set this to TRUE if the constraint is only locally valid, e.g., generated in
a branch and bound node

modifiable set this to TRUE if the constraint may be modified during solution
process, e.g. new variables may be added (colum generation)

dynamic set this to TRUE if this constraint is subject to aging, this means it
will be removed after being inactive for a while (you should also say TRUE
to removable in that case)

removable set this to TRUE to allow the deletion of the relaxation of the con-
straint from the LP

stickingatnode set this to TRUE if you want the constraint to be kept at the
node it was added

Variables which are not added at the creation time of the constraint can be
added by calling:

SCIP_CALL_EXC(SCIPaddCoeflinear(scip, comns, var, 1.0));

Here “1.0” is the matrix coefficient.

2.4.6 Solving the problem

When the problem is setup completely we can solve it. This is done by
SCIP_CALL_EXC(SCIPsolve(scip));

SCIP then starts transforming and preprocessing the problem. After that it
enters the solving stage where the root LP is solved, heuristics are run, cuts are
generated, and the branching process starts. All plugins you wrote (heuristics,
separators, etc.) will be called by SCIP through call back functions in this stage.

2.4.7 Accessing results

Now that the problem is solved, we want to know the solution data. Whether
the problem has been solved to optimality, only feasible solutions were found,
and so on, can be queried by SCIPgetStatus. We ignore this in our queens
solver and start with the best solution found so far. This can be accessed by

SCIP_SOL* sol = SCIPgetBestSol(scip);

If SCIP did not find a solution sol is equal to 0. Otherwise, you can get the
objective value by SCIPgetSol0rigObj. In the queens example we want to know
whether a queen is placed on a field or not. Therefore we need the value of the
variable x; ; which can be accessed by SCIPgetSolVal. In the case of an integer
or binary variable, care must be taken, because this functions returns double
values. So if we want to query a binary variable we use the following:

if (sol == NULL)

{
// output error message here and abort
}
if (SCIPgetSolVal(scip, sol, var) > 0.5)
{
// value is one
}
else
{
// value is zero
}

In this example, we of course use the knowledge that variables have 0/1 values
only. There are special SCIP functions for performing numerical comparisons
between values that are not known to be integer. For instance, you can use
SCIPisFeasEQ(scip, x, y) for comparing whether = is equal to y within the
feasibility tolerance of SCIP. This macro return true if | — y| < €, where € is
the feasibility tolerance of SCIP (by default ¢ = 107°).

2.4.8 Freeing the SCIP environment

Finally, we must free all the memory SCIP used. When we created the vari-
ables and constraints, the SCIPcreateVar and SCIPcreateCons captured the
corresponding variables and constraints. This means that SCIP knows that we
have a pointer to these and will only free the memory if we tell it that we do
not need these pointers anymore. This is done by the SCIPrelease functions.
So before we can free the SCIP pointer, we have to call:

SCIP_CALL_EXC(SCIPreleaseVar(scip, & var);
SCIP_CALL_EXC(SCIPreleaseCons(scip, & cons);

Then we close the SCIP environment:

SCIP_CALL_EXC(SCIPfree(& scip));

References

[1] Achterberg, Tobias: Constraint Integer Programming, PhD thesis, Tech-
nische Universitat Berlin, 2007

[2] Wunderling, Roland: Paralleler und Objektorientierter Simplez-
Algorithmus, PhD thesis, Technische Universitéit Berlin, 1996

[3] Koch, Thorsten: Rapid Mathematical Programming, PhD thesis, Technis-
che Universitat Berlin, 2004

	Preface
	Using SCIP as a MIP solver backend
	The n-queens problem
	Error handling in SCIP
	Include files
	Developing a queens solver
	Initializing the SCIP environment
	Loading all desired plugins
	Creating a problem
	Creating variables
	Creating constraints
	Solving the problem
	Accessing results
	Freeing the SCIP environment

